Acta Cryst. (1991). C47, 2304–2307

Nonacarbonyl- μ_3 -hydrido-tris(μ -diphenylphosphido)-*tetrahedro*-tetrarhenium, a Twofold Unsaturated 56-Valence Electron Cluster and a Related Gold Rhenium Compound

BY HANS-JÜRGEN HAUPT, ULRICH FLÖRKE AND HARALD SCHNIEDER

Anorganische und Analytische Chemie, Universität-GH Paderborn, Warburger Strasse 100, D-4790 Paderborn, Germany

(Received 2 January 1991; accepted 28 May 1991)

Abstract. (I) Nonacarbonyl-1 $\kappa^3 C$, $2\kappa^2 C$, $3\kappa^2 C$, $4\kappa^2 C$ tris(μ -diphenylphosphido-2: $3\kappa^2 P$;2: $4\kappa^2 P$;3: $4\kappa^2 P$)- μ_3 - $C_{45}H_{31}O_9P_3Re_4$, hydrido-tetrahedro-tetrarhenium, $M_r = 1553.5$, trigonal, $R\overline{3}$, a = 17.786 (4), c =28·146 (7) Å, V = 7710.9 Å³, Z = 6, 2·006 Mg m⁻³, λ (Mo $K\alpha$) = 0·71073 Å, 9·66 mm⁻¹, F(000) = 4308, T = 298 (1) K, $D_{\rm r} =$ $\mu =$ R =0.0505 for 1636 unique reflections. The central molecular fragment shows a trigonal pyramidal Re₄ cluster, the equilateral Re₃ base plane of which is Re-Re bridged by diphenylphosphido groups. The mean Re-Re distances are 2.708 (1) (Re, ring) and 2.931 (1) Å. (II) Hexacarbonyl-1 $\kappa^2 C$, $2\kappa^2 C$, $3\kappa^2 C$ tris(μ -diphenylphosphido-1:2 $\kappa^2 P$;1:3 $\kappa^2 P$;2:3 $\kappa^2 P$)- μ_3 -hydrido-(triphenylphosphine- $4\kappa^1 P$)-tetrahedrogoldtrirhenium, $C_{60}H_{46}AuO_6P_4Re_3$, $M_r = 1742.5$, orthorhombic, *Pbcn*, a = 20.502 (3), b = 24.415 (4), $c = 23.792 (5) \text{ Å}, \quad V = 11909.2 \text{ Å}^3, \quad Z = 8, \quad D_x = 11909.2 \text{ Å}^3$ 1.943 Mg m⁻³, λ (Mo $K\alpha$) = 0.70173 Å, 8.77 mm⁻¹, F(000) = 6544, T = 298 (1) K, $\mu =$ R =0.0732 for 4388 unique reflections. The AuPPh₃ group is bound to all Re atoms of a planar Re₃ ring which is bridged by diphenylphosphido groups. The mean bond distances of the AuRe₃ core are Au-Re = 2.854 (2) and Re-Re = 2.753 (2) Å.

Introduction. The title substance (I) belongs to the family of tetranuclear rhenium carbonyl derivatives which fulfill a valence electron count of 56 (Henly, 1989). The only structurally characterized cluster with two double bonds is $\text{Re}_4(\text{CO})_{12}(\mu-H)_4$ (Wilson & Bau, 1976) which has Re-Re bond lengths in the narrow range 2.886(1)-2.945(1) Å. They are short compared with a single-bond length of 3.104 (1) Å found in Re₂(CO)₁₀ (Churchill, Amon & Wassermann, 1981). To account for these observations the hybrid resonance structure (i) was proposed; the isoelectronic title compound (I) might behave similarly. However, ³¹P NMR measurements obtained from deuterochloroform solutions of the title substance (196.6; s, μ -P) and of the cluster Re₃(CO)₆(μ -H)₂(μ -PPh₂)₃ (198.2; s, μ -P) having a phosphidobridged Re₃ ring, formally with two double bonds (Haupt, Flörke & Balsaa, 1988), indicate that the π delocalization effect in the title substance could be restricted to the phosphido-bridged ring fragment (ii). To clarify the kind of π delocalization, a singlecrystal X-ray structural determination of the title substance was undertaken. Additionally, the same was done for Re₃(CO)₆(μ -H)(μ -PPh₂)₃(AuPPh₃) (II), which has one AuPPh₃ unit with predominant σ bonding properties instead of a Re(CO)₃ group with a σ -, π -bonding pattern.

Experimental. Dark-red crystals of $\text{Re}_4(\text{CO})_9(\mu_3\text{-H})$ - $(\mu\text{-PPh}_2)_3$, (I), were prepared by heating $\text{Re}_2(\text{CO})_6(\text{eq-NCCH}_3)_2(\mu\text{-PPh}_2)_2$ in xylene solution under reflux and orange-red crystals of $\text{Re}_3(\text{CO})_6(\mu_3\text{-H})(\mu\text{-PPh}_2)_3(\text{AuPPh}_3)$, (II), were prepared by heating (I) with an excess of PPh₃AuCl in xylene solution at 493 K in a glass bomb tube (Schnieder, 1990).

Crystal size of (I) $0.25 \times 0.26 \times 0.31$ mm, Nicolet diffractometer, graphite monochromator, Mo Ka radiation, $\lambda = 0.71073$ Å, lattice parameters refined from 25 reflections ($10 \le 2\theta \le 26^{\circ}$), $\omega - 2\theta$ scan, scan speed 2.9° min⁻¹, 2422 intensities collected $3 \le 2\theta \le 55^{\circ}$, $0 \le h \le 23$, $-1 \le k \le 23$, $0 \le l \le 36$, three standards recorded every 400 reflections, only random deviations, Lp correction, empirical absorption correction *via* ψ -scans, min./max. transmission factors 0.301/0.663, after merging ($R_{int} = 0.022$) 2388 unique reflections, 1636 with $F > 4\sigma(F)$. Structure solved by

0108-2701/91/112304-04\$03.00

© 1991 International Union of Crystallography

direct methods and subsequent ΔF maps, full-matrix least-squares refinement based on F (70 parameters); Re and P refined anisotropically, phenyl groups treated as rigid bodies (C-C 1 395, C-H 0 96 Å), H atoms fixed in calculated idealized positions with $U_{\rm iso} = 0.08 \text{ Å}^2$, max. $(\Delta/\sigma) = 0.001$, max. height in final ΔF syntheses 1.1 e Å⁻³ near Re position, refinement converged to R = 0.051, wR = 0.044, w = $1/[\sigma^2(F) + 0.0001\bar{F}^2]$. Scattering factors, structure solution and refinement using SHELXTL-Plus88 (Sheldrick, 1988).

Crystal size of (II) $0.23 \times 0.28 \times 0.30$ mm, lattice parameters refined from 38 reflections $10 \le 2\theta \le 32^\circ$, ω -2 θ scan, 11 403 intensities $3 \le 2\theta \le 50^\circ$, $0 \le h \le$ 24. $0 \le k \le 29, 0 \le l \le 28$, three standards every 400 reflections, only random deviations, min./max. transmission factors 0.07/0.24, 4388 unique reflections with $F > 5\sigma(F)$, full-matrix least-squares refinement on F (229 parameters); Au, Re, P refined anisotropically, μ_3 -H position located from ΔF map but not refined, max. $(\Delta/\sigma) = 0.001$, max. height in final ΔF syntheses 1.9 e Å⁻³ near Re position, final R = $0.073, wR = 0.062, w = 1/[\sigma^2(F) + 0.0001F^2];$ further details of the structural analysis as above.

Discussion. The structures of (I) and (II) are shown in Figs. 1 and 2. Atomic parameters are given in Tables 1 and 2 and selected bond lengths and angles in Table 3.* Both molecules have C_1 point-group symmetry. If the different conformations of the phenyl groups are neglected, the atom arrangement in both fragments $\operatorname{Re}_4(\operatorname{CO})_{\circ}(\mu - P)_{3}(\mu_{3} - H)$ and $\operatorname{Re}_{3}(\operatorname{CO})_{9}(\mu - P)_{3}(\mu_{3} - H)\mu_{3} - Au)$ nearly reaches $C_{3\nu}$ symmetry. Their common molecular core is $\operatorname{Re}_{3}(\operatorname{CO})_{6}(\mu_{3}-H)(\mu-PPh_{2})_{3}$. Although the included μ_3 -H atom for (I) could not be located from the ΔF map, its presence is assured through the ¹H NMR value of $-14.5 [q, 1H; {}^{2}J(PH) 9.1 Hz]$.

To indicate the multiple-bond character in both diphenylphosphido-bridged Re₃ rings, the average Re-Re bond length of 2.708 (1) Å in (I) and of 2.752 (2) Å in (II) is compared with that of 2.730 (1) Å in $\text{Re}_3(\text{CO})_6(\mu_3-\text{H})_2(\mu-\text{PPh}_2)_3$ which has such a bond character in a twofold unsaturated Re₃ ring (Haupt, Flörke & Balsaa, 1988). This shows that the π delocalization in the Re₃(μ -P)₃ base plane of the aforementioned common molecular core is somewhat strengthened by the addition of one apical Re(2)(CO)₃ group with a σ -, π -bonding pattern as in (I) and somewhat reduced by that of one apical

AuPPh₃ group with a predominant σ -bonding pattern as in (II) (Owen, 1988). In the case of the reinforcement of the π -bonding system it is extended through the apical Re(2) atom, and has an average Re(2)—Re bond length of 2.931 (1) Å equivalent to the range of such π metal-metal bond lengths in $Re_4(CO)_{12}(\mu-H)_4$ [2.886 (1)–2.945 (1) Å]. It is evident from these findings in (I) that the related π -bonding pattern in resonance structure (i) is modified through a strengthened π -delocalization effect originating from three bridging diphenylphosphido groups and is like a superposition of the resonance structures (i) and (ii). In the other case, the π -delocalization effect is weakened, since one μ_3 -H atom of smaller atomic size is replaced by a larger μ_3 -Au atom in (II). The mean Re—Au bond length of 2.854 (2) Å in (II) is in accordance with that of 2.796 (2) Å in the valence electron saturated cluster $\text{Re}_2(\text{CO})_8(\mu$ -PPh₂)(AuPPh₃) (Haupt, Heinekamp & Flörke, 1990).

Fig. 1. General view of the molecule of (I). (Phenyl groups omitted for clarity.)

omitted for clarity.)

^{*} Lists of structure factors, anisotropic temperature factors, H-atom coordinates and a complete list of bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54238 (54 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester Fig. 2. General view of the molecule of (II). (Phenyl groups CHI 2HU, England.

Table 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for (I)

	x	y	Z	$U_{\rm iso}/U_{\rm eo}$	C(45)
Re(1)	2332 (1)	6311 (1)	-48(1)	36 (1)*	C(46)
Re(2)	3333	6667	-928(1)	56 (1)*	C(51)
P(1)	2709 (3)	7792 (3)	11 (2)	46 (3)*	C(52)
Cú	1343 (15)	5949 (15)	380 (7)	69 (6)	C(53)
ŌÛ	821 (12)	5772 (12)	666 (6)	100 (6)	C(54)
C(2)	1549 (13)	6037 (13)	- 555 (7)	57 (5)	C(55)
O(2)	1023 (10)	5848 (10)	-847(5)	81 (5)	C(56)
Č(3)	4238 (16)	6853 (16)	-1315(8)	77(7)	C(61)
Ō(3)	4821 (13)	6958 (12)	-1557(6)	111 (6)	C(62)
C(1)	2441 (10)	8358 (9)	-432 (4)	56 (5)	C(63)
$\dot{C}(12)$	3076	9200	- 555	76 (7)	C(64)
CII	2905	9652	- 903	105 (9)	C(65)
C(14)	2099	9262	- 1129	112(10)	C(66)
C(15)	1464	8420	- 1006	125 (11)	C(71)
C(16)	1635	7968	- 658	78 (7)	C(72)
C(21)	2461 (9)	8138 (9)	572 (4)	50 (5)	C(73)
C(22)	2081	8659	580	89 (8)	C(74)
C(23)	1900	8915	1014	125 (11)	C(75)
C(24)	2100	8650	1439	95 (8)	C(76)
C(25)	2480	8128	1430	90 (8)	C(81)
C(26)	2661	7872	996	75 (7)	C(82)
- (-))			,,,,	<i>is</i> (<i>i</i>)	C(83)
* Equivalent isotropic U defined as one third of the trace of the					C(84)

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

Table 2. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for (II)

	x	у	Ζ	$U_{\rm iso}/U_{\rm eq}$
Au(1)	7533 (1)	5567 (1)	5141 (1)	50 (1)*
Re(1)	7817 (1)	6160 (1)	4130 (1)	46 (1) *
Re(2)	7258 (1)	5141 (1)	4035 (1)	45 (1)*
Re(3)	8529 (1)	5241 (1)	4400 (l)	48 (1)*
P(1)	6732 (4)	5979 (4)	3828 (4)	45 (6)*
P(2)	7929 (5)	4407 (4)	4336 (4)	52 (6)*
P(3)	8895 (4)	6158 (4)	4523 (4)	51 (6)*
P(4)	7212 (5)	5587 (4)	6092 (4)	53 (6)*
C(1)	7555 (19)	6762 (14)	4509 (15)	63 (11)
O(1)	7293 (12)	7178 (10)	4699 (10)	70 (8)
C(2)	8077 (20)	6499 (17)	3522 (20)	80 (14)
O(2)	8267 (14)	6754 (12)	3095 (13)	96 (10)
C(3)	7054 (18)	4768 (16)	3428 (18)	70 (12)
O(3)	6885 (12)	4557 (10)	2961 (11)	71 (8)
C(4)	6514 (18)	4827 (15)	4350 (16)	64 (10)
O(4)	6045 (14)	4604 (11)	4578 (12)	88 (9)
C(5)	9004 (20)	4995 (17)	5049 (20)	83 (14)
O(5)	9317 (14)	4873 (12)	5434 (13)	98 (10)
C(6)	9177 (20)	5018 (17)	3921 (18)	78 (13)
O(6)	9581 (12)	4868 (11)	3590 (12)	82 (9)
C(11)	6052 (9)	6249 (9)	4247 (10)	47 (9)
C(12)	5987	6078	4804	68 (12)
C(13)	5485	6286	5137	83 (13)
C(14)	5048	6666	4914	65 (11)
C(15)	5113	6837	4357	65 (11)
C(16)	5615	6629	4024	70 (12)
C(21)	6507 (10)	6148 (9)	3118 (7)	44 (8)
C(22)	6665	6653	2881	52 (10)
C(23)	6429	6793	2350	97 (15)
C(24)	6035	6427	2056	75 (13)
C(25)	5876	5921	2292	78 (13)
C(26)	6112	5782	2823	57 (11)
C(31)	8273 (10)	3860 (9)	3821 (10)	59 (11)
C(32)	8439	4036	3282	63 (11)
C(33)	8730	3672	2905	86 (14)
C(34)	8854	3133	3068	77 (12)
C(35)	8688	2958	3607	60 (11)
C(36)	8398	3322	3984	70 (12)
C(41)	7673 (14)	4019 (11)	4957 (10)	76 (13)
C(42)	7955	4093	5485 (10)	96 (16)
C(43)	7717	3804	5947 (10)	83 (12)
C(44)	7195	3442	5882 (10)	111 (16)

	X	y	Z	$U_{\rm iso}/U_{\rm eg}$
C(45)	6913	3369	5354 (10)	121 (19)
C(46)	7151	3658	4891 (10)	95 (15)
C(51)	9573 (12)	6463 (12)	4135 (12)	62 (11)
C(52)	9729	6237	3613	83 (14)
C(53)	10273	6424	3318	98 (14)
C(54)	10661	6838	3545	94 (19)
C(55)	10506	7064	4066	83 (14)
C(56)	9962	6877	4361	75 (12)
C(61)	9062 (13)	6391 (10)	5253 (8)	67 (12)
C(62)	8637	6735	5545	60 (11)
C(63)	8794	6910	6086	82 (13)
C(64)	9376	6740	6336	73 (12)
C(65)	9801	6397	6044	92 (15)
C(66)	9644	6222	5503	88 (14)
C(71)	7716 (11)	5174 (9)	6558 (9)	54 (10)
C(72)	7451	4785	6921	53 (9)
C(73)	7858	4485	7277	87 (14)
C(74)	8530	4576	7269	70 (12)
C(75)	8795	4965	6906	98 (15)
C(76)	8388	5265	6551	69 (12)
C(81)	7220 (11)	6278 (7)	6393 (10)	61 (10)
C(82)	7025	6697	6032	63 (11)
C(83)	6995	7236	6227	84 (14)
C(84)	7159	7354	6783	70 (12)
C(85)	7354	6935	7144	75 (12)
C(86)	7384	6397	6949	80 (13)
C(91)	6386 (9)	5318 (10)	6196 (11)	56 (10)
C(92)	6215	4878	5852	69 (11)
C(93)	5579	4676	5859	78 (13)
C(94)	5113	4914	6209	85 (14)
C(95)	5283	5355	6553	86 (14)
C(96)	5920	5556	6546	81 (13)

Table 2 (cont.)

T7 /T7

...

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table 3. Selected bond lengths (Å) and angles (°)

(I)				
Re(1)—Re(1) 2.708	3 (1)	Re(1) - Re(2)	2.931	(1)
Re(1)—P(1) 2.377	7 (5)	Re(1) - P(1a)	2.381	(5)
				• /
Re(1a)— $Re(1)$ — $Re(1b)$	60.0 (1)	Re(1a) - Re(1) -	Re(2)	62.5 (1)
$Re(1a) \rightarrow Re(1) \rightarrow P(1)$	115.2 (1)	Re(1b) - Re(1) - Re(1)	P(1)	55.4 (1)
Re(1a)— $Re(1)$ — $P(1a)$	55.2 (1)	Re(2)—Re(1)—P	(1)	90.8 (1)
P(1)— $Re(1)$ — $P(1a)$	167.6 (2)	Re(1)-Re(2)-R	e(1a)	55.0 (1)
Re(1) - P(1) - Re(1a)	69.4 (2)			
(II)				
$A_{11}(1) = B_{0}(1) = 2.966$	(2)	A(1) D(2)	2 00 4	
Au(1) - Re(1) = 2.803	(2)	Au(1) - Re(2)	2.884	(2)
Au(1) - Re(3) = 2.814	(2)	Re(1) - Re(2)	2.748	(2)
Re(1) - Re(3) = 2.752	2 (2)	$Re(2) \rightarrow Re(3)$	2.757	(2)
D _(1) A _(1) D _(2)	67.1.(1)			
$Re(1) \rightarrow Au(1) \rightarrow Re(2)$	57.1(1)	Re(1) - Au(1) - R	le(3)	58.0 (1)
$\operatorname{Re}(2)$ — $\operatorname{Au}(1)$ — $\operatorname{Re}(3)$	57.8 (1)	Au(1) - Re(1) - R	le(2)	61.8 (1)
Au(1) - Re(1) - Re(3)	60·1 (1)	$Re(2) \rightarrow Re(1) \rightarrow Re(1)$.e(3)	60.2 (1)
Au(1)— $Re(2)$ — $Re(1)$	61.1 (1)	Au(1) - Re(2) - R	le(3)	59.8 (1)
$Re(1) \rightarrow Re(2) \rightarrow Re(3)$	60·0 (1)	Au(1) - Re(3) - R	le(1)	61.9 (1)
Au(1) - Re(3) - Re(2)	62·3 (1)	Re(1)-Re(3)-R	e(2)	59·8 (1)
$Au(1) \rightarrow Re(3) \rightarrow Re(2)$	62·3 (1)	$Re(1) \rightarrow Re(3) \rightarrow Re(3)$.e(2)	59.8 (1)

The cluster in (II), therefore, represents a metalatom tetrahedron with π delocalization restricted on the plane of the $\text{Re}_3(\mu-\text{PPh}_2)_3$ ring. This means that one way to the resonance hybrid structure (ii) is the substitution of a transition-metal atom by a metal atom with a predominant σ -bonding pattern like AuPPh₃. The first known compound of this type was

the anion Re₃(CO)₉(μ -H)₃(μ ₃-AuPPh₃)⁻ (44 valence electrons) formally requiring two double Re-Re bonds, which results in a delocalization on the three Re-Re edges. The related Re-Re and Re-Au bond lengths have mean values of 2.894(1) and 2.837 (1) Å respectively (Beringhelli, Ciani, D'Alfonso, de Malde & Freni, 1986). From a comparison of these Re-Re and Au-Re bond lengths with those in (II), it becomes obvious that heteronuclear metal-metal bond lengths show no remarkable change, but Re-Re distances are distinctly shortened. This shows that μ -PPh₂ groups support a π -delocalization bonding effect in the Re-Re triangle more than μ -H atoms do. Other structural features are comparable with those in similar phosphido-bridged rhenium clusters (Haupt, Balsaa & Flörke, 1988).

References

- Beringhelli, T., Ciani, G., D'Alfonso, G., de Malde, V. &
- FRENI, M. (1986). J. Chem. Soc. Chem. Commun. pp. 735-737. CHURCHILL, M. R., AMON, K. N. & WASSERMANN, H. J. (1981).
- Inorg. Chem. 20, 1609–1611. HAUPT, H.-J., BALSAA, P. & FLÖRKE, U. (1988). Inorg. Chem. 27,
- 280–286. HAUPT, H.-J., FLÖRKE, U. & BALSAA, P. (1988). Acta Cryst. C44, 61–63.
- HAUPT, H.-J., HEINEKAMP, C. & FLÖRKE, U. (1990). Inorg. Chem. 29, 2955–2963.
- HENLY, J. T. (1989). Coord. Chem. Rev. 93, 269-295.
- OWEN, S. M. (1988). Polyhedron, 7, 253-283.
- SCHNIEDER, H. (1990). Dissertation, pp. 126, 131. Univ. of Paderborn, Germany.
- SHELDRICK, G. M. (1988). SHELXTL-Plus88. Structure Determination Software Programs. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- WILSON, R. D. & BAU, R. (1976). J. Am. Chem. Soc. 98, 4687–4689.

Acta Cryst. (1991). C47, 2307-2310

Structure of Di- μ -acetato- μ -oxo-bis[bis(2-pyridylmethyl)amine|diiron(III) Diperchlorate 0.9-Acetone Solvate

BY ROBERT J. O'BRIEN, JOHN F. RICHARDSON* AND ROBERT M. BUCHANAN*

Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA

(Received 12 September 1990; accepted 10 May 1991)

Abstract. $[C_{28}H_{32}Fe_2N_6O_5](ClO_4)_2.0.9(C_3H_6O), M_r =$ 889.66, triclinic, $P\overline{1}$, a = 13.601 (3), b = 13.966 (3), c= 12.341 (3) Å, α = 100.10 (2), β = 99.56 (2), γ = 115·19 (2)°, $V = 2010.6 \text{ Å}^3$, Z = 2, $D_x = 1.46 \text{ g cm}^{-3}$, Mo $K\alpha$, $\lambda = 0.7093$ Å, $\mu = 9.12$ cm⁻¹, F(000) =915.2, T = 296 K, final R = 0.057 for 5092 unique reflections. The structure consists of a binuclear cation with two disordered perchlorate counterions and a partial acetone solvate molecule. The Fe-Fe separation is 3.041 (1) Å with both Fe atoms octahedrally coordinated by a bridging oxo, two bridging acetate groups, and the facial capping ligand bis(2pyridylmethyl)amine (bpma). The average Fe-O(0x0) bond distance is 1.792 (3) Å and the Fe-O-Fe bond angle is 116.2 (2)°. The pyridine pendants of bpma are located cis to the oxo group.

Introduction. Synthetic $(\mu$ -oxo)bis $(\mu$ -carboxylato)diiron(III) compounds are of interest due to the presence of this unit at the active site of the non-heme oxo-iron protein hemerythrin (Stenkamp, Sieker & Jensen, 1984). Structures of several diiron complexes containing $(\mu$ -oxo)bis $(\mu$ -carboxylato) core units and facial capping amine ligands have been reported (Armstrong, Spool, Papaefthymiou, Frankel & Lippard, 1984; Hartman, Rardin, Chaudhuri, Pohl, Wieghardt, Nuber, Weiss, Papaefthymiou, Frankel & Lippard, 1987; Gomez-Romero, Casan-Pastor, Ben-Hussein & Jameson, 1988). These compounds reproduce, in part, the magnetic $(-J > 100 \text{ cm}^{-1})$ and spectroscopic properties reported for methemerythrin (Lippard, 1988; Que & Scarrow, 1988) and are considered to be good structural models of the protein active site. We wish to report herein the structure of $[Fe_2O(bpma)_2(\mu - O_2CCH_3)_2](ClO_4)_2.0.9$ - (C_3H_6O) , where bpma is bis(2-pyridylmethyl)amine. The synthesis and physical properties of the analogous benzoate compound have been reported recently (Norman, Yan, Que, Backes, Ling, Sanders-Loehr, Zhang & O'Connor, 1990).

Experimental. The ligand bpma was synthesized by a previously reported procedure (Gruenwedel, 1968). The diiron complex was synthesized following the self-assembly method (Gomez-Romero, Casan-Pastor, Ben-Hussein & Jameson, 1988). A dark-green, multi-faceted crystal from acetone:ethanol, $0.28 \times 0.32 \times 0.32$ mm. Enraf-Nonius CAD-4 dif-

© 1991 International Union of Crystallography

^{*} To whom correspondence should be addressed.